Part Number Hot Search : 
ANTXV2N 0M187 VSSAF56 MBR150 1E104 APT15 KTA733 XC2VP70
Product Description
Full Text Search
 

To Download XU1009-BD0707 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 18.0-36.0 GHz GaAs MMIC Transmitter
July 2007 - Rev 27-Jul-07
Features
Sub-harmonic Transmitter Integrated Mixer, LO Doubler/Buffer & Output Amplifier +25.0 dBm Output Third Order Intercept (OIP3) 35.0 dB Gain Control 2.0 dBm LO Drive Level 9.0 dB Conversion Gain 100% On-Wafer RF and DC Testing 100% Visual Inspection to MIL-STD-883 Method 2010
Chip Device Layout
U1009-BD
Mimix Broadband's 18.0-36.0 GHz GaAs MMIC transmitter has a +25.0 dBm output third order intercept across the band. This device is a balanced resistive pHEMT mixer followed by a distributed amplifier and includes an integrated LO doubler and LO buffer amplifier. The use of integrated LO doubler and LO buffer amplifier makes the provision of the LO easier than for fundamental mixers at these frequencies. IF and IF mixer inputs are provided through an external 180 degree hybrid. This MMIC uses Mimix Broadband's 0.15 m GaAs PHEMT device model technology, and is based upon electron beam lithography to ensure high repeatability and uniformity. The chip has surface passivation to protect and provide a rugged part with backside via holes and gold metallization to allow either a conductive epoxy or eutectic solder die attach process. This device is well suited for Millimeter-wave Point-to-Point Radio, LMDS, SATCOM and VSAT applications.
General Description
XU1009-BD
Absolute Maximum Ratings
Supply Voltage (Vd) Supply Current (Id1,2,3) Gate Bias Voltage (Vg) Input Power (IF Pin) Storage Temperature (Tstg) Operating Temperature (Ta) Channel Temperature (Tch)
+6.0 VDC 320,190,110 mA +0.3 VDC 0.0 dBm -65 to +165 OC -55 to MTTF Table 3 MTTF Table 3
(1) Measured using constant current. (2) Measured using LO Input drive level of +2.0 dBm. (3) Channel temperature affects a device's MTTF. It is recommended to keep channel temperature as low as possible for maximum life.
Electrical Characteristics (Ambient Temperature T = 25o C)
Parameter Frequency Range (RF) Upper Side Band Frequency Range (RF) Lower Side Band Frequency Range (LO) Frequency Range (IF) Output Return Loss RF (S22) Small Signal Conversion Gain IF/RF (S21) 2 LO Input Drive (PLO) Isolation LO/RF @ LOx1 Isolation LO/RF @ LOx2 Output Third Order Intercept (OIP3)1,2 Drain Bias Voltage (Vd1,2,3) Source Bias Voltage (Vss) Gate Bias Voltage (Vg1,2) Gate Bias Voltage (Vg3,4) Doubler, Mixer Supply Current (Id1) (Vd1=5.0V, Vg=-0.2V Typical) Supply Current (Id2) (Vd2=5.0V, Vg=-0.1V Typical) Supply Current (Id3) (Vd3=5.0V, Vg=-0.5V Typical) Supply Current (Iss) (Vss=-5.0V)
Units GHz GHz GHz GHz dB dB dBm dB dB dBm VDC VDC VDC VDC mA mA mA mA Min. 18.0 18.0 8.0 DC -1.2 -1.2 Typ. 14.0 9.0 +2.0 15.0 5.0 +25.0 +5.0 -5.0 -0.2 -0.5 230 140 75 50
Max. 36.0 36.0 19.5 3.0 +5.5 +0.1 +0.1 280 170 90 60
Page 1 of 9
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Characteristic Data and Specifications are subject to change without notice. (c)2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC Transmitter
July 2007 - Rev 27-Jul-07
U1009-BD
XU1009-BD_samp les: LSB Conversion gain (dB) vs. RF LSB (GHz) IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
20 18 16
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
Transmitter Measurements
XU1009-BD_5samples: USB Conversion gain (dB) vs. RF USB (GHz) IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
20 18 16 14 USB Conversion gain (dB) 12 10 8 6 4 2 0 19 20 21 22 23 24 25 26 27 28 29 30 31 RF USB (GHz)
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
LSB Conversion gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13
14 12 10 8 6 4 2 0 19 20 21 22 23 24 25 RF LSB (GHz) 26 27 28 29 30 31
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
XU1009-BD_5samples: LO to RF gain (dB) vs. LO freq (GHz) IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
5 20 0 15 -5
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
XU1009-BD_5samples: LOx2 to RF gain (dB) vs. LO freq (GHz) IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
10 5
-10
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13
LO to RF gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11
-15
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
LOx2 to RF gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13
0 -5 -10 -15
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
-20
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13
-25
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
-30 -20 -35 -25 -40 8 9 10 11 12 13 14 15 16 17 -30 8 9 10 11 12 13 14 15 16 17 LO freq (GHz) LO freq (GHz)
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
XU1009-BD _4samples: OIP3 and IIP3 (dBm) vs. RF USB (GHz) IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 0, 2 & 4 dBm
30 28 26
, LO Power (dBm)=0, RC=R5C10
XU1009-BD_4samples: OIP3 and IIP3 (dBm) vs. RF LSB (GHz) IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 0, 2 & 4 dBm
30
OIP3 (dBm)
28 26
OIP3 (dBm)
, LO Power (dBm)=0, RC=R5C10
24 22 20 OIP3 and IIP3 (dBm) 18 16 14 12 10 8 6 4 2 0 19 20 21 22 23 24 25 RF USB (GHz) 26 27 28 29 30 31 IIP3 (dBm)
, LO Power (dBm)=0, RC=R5C13 , LO Power (dBm)=0, RC=R7C11 , LO Power (dBm)=0, RC=R7C13 , LO Power (dBm)=2, RC=R5C10 , LO Power (dBm)=2, RC=R5C13
24 22 20 OIP3 and IIP3 (dBm) IIP3 (dBm) 18 16 14 12 10 8 6 4 2 0 19 20 21 22 23 24 25 RF LSB (GHz) 26 27 28 29 30 31
, LO Power (dBm)=0, RC=R5C13 , LO Power (dBm)=0, RC=R7C11 , LO Power (dBm)=0, RC=R7C13 , LO Power (dBm)=2, RC=R5C10 , LO Power (dBm)=2, RC=R5C13 , LO Power (dBm)=2, RC=R7C11 , LO Power (dBm)=2, RC=R7C13 , LO Power (dBm)=4, RC=R5C10 , LO Power (dBm)=4, RC=R5C13 , LO Power (dBm)=4, RC=R7C11 , LO Power (dBm)=4, RC=R7C13 , LO Power (dBm)=0, RC=R5C10 , LO Power (dBm)=0, RC=R5C13 , LO Power (dBm)=0, RC=R7C11 , LO Power (dBm)=0, RC=R7C13 , LO Power (dBm)=2, RC=R5C10 , LO Power (dBm)=2, RC=R5C13 , LO Power (dBm)=2, RC=R7C11 , LO Power (dBm)=2, RC=R7C13 , LO Power (dBm)=4, RC=R5C10 , LO Power (dBm)=4, RC=R5C13 , LO Power (dBm)=4, RC=R7C11 , LO Power (dBm)=4, RC=R7C13
, LO Power (dBm)=2, RC=R7C11 , LO Power (dBm)=2, RC=R7C13 , LO Power (dBm)=4, RC=R5C10 , LO Power (dBm)=4, RC=R5C13 , LO Power (dBm)=4, RC=R7C11 , LO Power (dBm)=4, RC=R7C13 , LO Power (dBm)=0, RC=R5C10 , LO Power (dBm)=0, RC=R5C13 , LO Power (dBm)=0, RC=R7C11 , LO Power (dBm)=0, RC=R7C13 , LO Power (dBm)=2, RC=R5C10 , LO Power (dBm)=2, RC=R5C13 , LO Power (dBm)=2, RC=R7C11 , LO Power (dBm)=2, RC=R7C13 , LO Power (dBm)=4, RC=R5C10 , LO Power (dBm)=4, RC=R5C13 , LO Power (dBm)=4, RC=R7C11 , LO Power (dBm)=4, RC=R7C13
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 2 of 8
Characteristic Data and Specifications are subject to change without notice. (c)2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC Transmitter
July 2007 - Rev 27-Jul-07
U1009-BD
Transmitter Measurements (cont.)
XU1009-BD_5samples: USB Conversion gain (dB) vs. Vg1 (V) IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
15
, LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO Power (dBm)=2, RF freq (GHz)=20, RC=R5C10 Power (dBm)=2, RF freq (GHz)=20, RC=R5C13 Power (dBm)=2, RF freq (GHz)=20, RC=R6C11 Power (dBm)=2, RF freq (GHz)=20, RC=R7C11 Power (dBm)=2, RF freq (GHz)=20, RC=R7C13 Power (dBm)=2, RF freq (GHz)=21, RC=R5C10 Power (dBm)=2, RF freq (GHz)=21, RC=R5C13 Power (dBm)=2, RF freq (GHz)=21, RC=R6C11 Power (dBm)=2, RF freq (GHz)=21, RC=R7C11 Power (dBm)=2, RF freq (GHz)=21, RC=R7C13 Power (dBm)=2, RF freq (GHz)=22, RC=R5C10 Power (dBm)=2, RF freq (GHz)=22, RC=R5C13 Power (dBm)=2, RF freq (GHz)=22, RC=R6C11 Power (dBm)=2, RF freq (GHz)=22, RC=R7C11 Power (dBm)=2, RF freq (GHz)=22, RC=R7C13 Power (dBm)=2, RF freq (GHz)=23, RC=R5C10 Power (dBm)=2, RF freq (GHz)=23, RC=R5C13 Power (dBm)=2, RF freq (GHz)=23, RC=R6C11 Power (dBm)=2, RF freq (GHz)=23, RC=R7C11 Power (dBm)=2, RF freq (GHz)=23, RC=R7C13 Power (dBm)=2, RF freq (GHz)=24, RC=R5C10 Power (dBm)=2, RF freq (GHz)=24, RC=R5C13 Power (dBm)=2, RF freq (GHz)=24, RC=R6C11 Power (dBm)=2, RF freq (GHz)=24, RC=R7C11 Power (dBm)=2, RF freq (GHz)=24, RC=R7C13 Power (dBm)=2, RF freq (GHz)=25, RC=R5C10 Power (dBm)=2, RF freq (GHz)=25, RC=R5C13 Power (dBm)=2, RF freq (GHz)=25, RC=R6C11 Power (dBm)=2, RF freq (GHz)=25, RC=R7C11 Power (dBm)=2, RF freq (GHz)=25, RC=R7C13 Power (dBm)=2, RF freq (GHz)=26, RC=R5C10 Power (dBm)=2, RF freq (GHz)=26, RC=R5C13 Power (dBm)=2, RF freq (GHz)=26, RC=R6C11 Power (dBm)=2, RF freq (GHz)=26, RC=R7C11 Power (dBm)=2, RF freq (GHz)=26, RC=R7C13 Power (dBm)=2, RF freq (GHz)=27, RC=R5C10 Power (dBm)=2, RF freq (GHz)=27, RC=R5C13 Power (dBm)=2, RF freq (GHz)=27, RC=R6C11 Power (dBm)=2, RF freq (GHz)=27, RC=R7C11 Power (dBm)=2, RF freq (GHz)=27, RC=R7C13 Power (dBm)=2, RF freq (GHz)=28, RC=R5C10 Power (dBm)=2, RF freq (GHz)=28, RC=R5C13 Power (dBm)=2, RF freq (GHz)=28, RC=R6C11 Power (dBm)=2, RF freq (GHz)=28, RC=R7C11 Power (dBm)=2, RF freq (GHz)=28, RC=R7C13 Power (dBm)=2, RF freq (GHz)=29, RC=R5C10 Power (dBm)=2, RF freq (GHz)=29, RC=R5C13 Power (dBm)=2, RF freq (GHz)=29, RC=R6C11 Power (dBm)=2, RF freq (GHz)=29, RC=R7C11 Power (dBm)=2, RF freq (GHz)=29, RC=R7C13 Power (dBm)=2, RF freq (GHz)=30, RC=R5C10 Power (dBm)=2, RF freq (GHz)=30, RC=R5C13 Power (dBm)=2, RF freq (GHz)=30, RC=R6C11 Power (dBm)=2, RF freq (GHz)=30, RC=R7C11 Power (dBm)=2, RF freq (GHz)=30, RC=R7C13
10
5
0 USB Conversion gain (dB)
-5
-10
-15
-20
-25
-30
-35 -1.2
-1
-0.8
-0.6 Vg1 (V)
-0.4
-0.2
0
0.2
XU1009-BD_5samples: USB Conv Gain (dB), Id1 & IIP3 (dBm) vs. Vg1 (V) IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 2dBm
25 450
20
400
15 USB Conv Gain (dB) and IIP3 (dBm)
350
10
300
5
250
0
200
-5
150
-10
100
-15
50
-20 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 Vg1 (V) -0.3 -0.2 -0.1 0 0.1 0.2
0
, RF USB (GHz)=21, RC=R5C10 , RF USB (GHz)=21, RC=R5C12 , RF USB (GHz)=21, RC=R6C11 , RF USB (GHz)=21, RC=R7C11 , RF USB (GHz)=21, RC=R7C13 , RF USB (GHz)=23, RC=R5C10 , RF USB (GHz)=23, RC=R5C12 , RF USB (GHz)=23, RC=R6C11 , RF USB (GHz)=23, RC=R7C11 , RF USB (GHz)=23, RC=R7C13 , RF USB (GHz)=25, RC=R5C10 , RF USB (GHz)=25, RC=R5C12 , RF USB (GHz)=25, RC=R6C11 , RF USB (GHz)=25, RC=R7C11 , RF USB (GHz)=25, RC=R7C13 , RF USB (GHz)=27, RC=R5C10 , RF USB (GHz)=27, RC=R5C12 , RF USB (GHz)=27, RC=R6C11 , RF USB (GHz)=27, RC=R7C11 , RF USB (GHz)=27, RC=R7C13 , RF USB (GHz)=29, RC=R5C10 , RF USB (GHz)=29, RC=R5C12 , RF USB (GHz)=29, RC=R6C11 , RF USB (GHz)=29, RC=R7C11 , RF USB (GHz)=29, RC=R7C13 , RF USB (GHz)=21, RC=R5C10 , RF USB (GHz)=21, RC=R5C12 , RF USB (GHz)=21, RC=R6C11 , RF USB (GHz)=21, RC=R7C11 , RF USB (GHz)=21, RC=R7C13 , RF USB (GHz)=23, RC=R5C10 , RF USB (GHz)=23, RC=R5C12 , RF USB (GHz)=23, RC=R6C11 , RF USB (GHz)=23, RC=R7C11 , RF USB (GHz)=23, RC=R7C13 , RF USB (GHz)=25, RC=R5C10 , RF USB (GHz)=25, RC=R6C11 , RF USB (GHz)=25, RC=R7C11 , RF USB (GHz)=25, RC=R7C13 , RF USB (GHz)=27, RC=R5C10 , RF USB (GHz)=27, RC=R5C12 , RF USB (GHz)=27, RC=R6C11 , RF USB (GHz)=27, RC=R7C11 , RF USB (GHz)=27, RC=R7C13 , RF USB (GHz)=29, RC=R5C10 , RF USB (GHz)=29, RC=R5C12 , RF USB (GHz)=29, RC=R6C11 , RF USB (GHz)=29, RC=R7C11 , RF USB (GHz)=29, RC=R7C13 , RF USB (GHz)=21, RC=R5C10 , RF USB (GHz)=21, RC=R5C12 , RF USB (GHz)=21, RC=R6C11 , RF USB (GHz)=21, RC=R7C11 , RF USB (GHz)=21, RC=R7C13 , RF USB (GHz)=23, RC=R5C10 , RF USB (GHz)=23, RC=R5C12 , RF USB (GHz)=23, RC=R6C11 , RF USB (GHz)=23, RC=R7C11 , RF USB (GHz)=23, RC=R7C13 , RF USB (GHz)=25, RC=R5C10 , RF USB (GHz)=25, RC=R5C12 , RF USB (GHz)=25, RC=R6C11 , RF USB (GHz)=25, RC=R7C11 , RF USB (GHz)=25, RC=R7C13 , RF USB (GHz)=27, RC=R5C10 RF USB (GHz)=27 RC=R5C12
XU1009-BD_5samples: LSB Conv Gain (dB) and IIP3 (dBm) vs. Vg1 (V) IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 2dBm
25
20
15 LSB Conv Gain (dB) and IIP3 (dBm)
10
5
0
-5
-10
-15
-20 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 Vg1 (V) -0.3 -0.2 -0.1 0 0.1 0.2
, RF LSB (GHz)=21, RC=R5C10 , RF LSB (GHz)=21, RC=R5C12 , RF LSB (GHz)=21, RC=R6C11 , RF LSB (GHz)=21, RC=R7C11 , RF LSB (GHz)=21, RC=R7C13 , RF LSB (GHz)=23, RC=R5C10 , RF LSB (GHz)=23, RC=R5C12 , RF LSB (GHz)=23, RC=R6C11 , RF LSB (GHz)=23, RC=R7C11 , RF LSB (GHz)=23, RC=R7C13 , RF LSB (GHz)=25, RC=R5C10 , RF LSB (GHz)=25, RC=R5C12 , RF LSB (GHz)=25, RC=R6C11 , RF LSB (GHz)=25, RC=R7C11 , RF LSB (GHz)=25, RC=R7C13 , RF LSB (GHz)=27, RC=R5C10 , RF LSB (GHz)=27, RC=R5C12 , RF LSB (GHz)=27, RC=R6C11 , RF LSB (GHz)=27, RC=R7C11 , RF LSB (GHz)=27, RC=R7C13 , RF LSB (GHz)=29, RC=R5C10 , RF LSB (GHz)=29, RC=R5C12 , RF LSB (GHz)=29, RC=R6C11 , RF LSB (GHz)=29, RC=R7C13 , RF LSB (GHz)=21, RC=R5C10 , RF LSB (GHz)=21, RC=R5C12 , RF LSB (GHz)=21, RC=R6C11 , RF LSB (GHz)=21, RC=R7C11 , RF LSB (GHz)=21, RC=R7C13 , RF LSB (GHz)=23, RC=R5C10 , RF LSB (GHz)=23, RC=R5C12 , RF LSB (GHz)=23, RC=R6C11 , RF LSB (GHz)=23, RC=R7C11 , RF LSB (GHz)=23, RC=R7C13 , RF LSB (GHz)=25, RC=R5C10 , RF LSB (GHz)=25, RC=R5C12 , RF LSB (GHz)=25, RC=R6C11 , RF LSB (GHz)=25, RC=R7C11 , RF LSB (GHz)=25, RC=R7C13 , RF LSB (GHz)=27, RC=R5C10 , RF LSB (GHz)=27, RC=R5C12 , RF LSB (GHz)=27, RC=R6C11 , RF LSB (GHz)=27, RC=R7C11 , RF LSB (GHz)=27, RC=R7C13 , RF LSB (GHz)=29, RC=R5C10 , RF LSB (GHz)=29, RC=R5C12 , RF LSB (GHz)=29, RC=R6C11 , RF LSB (GHz)=29, RC=R7C13
XU1009-BD_4samples: USB Conversion Gain (dB) vs. RF (GHz) IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias
15 14 13 12 11 15 14 13 12 11
XU1009-0BD_4samples: LSB Conversion Gain (dB) vs. RF (GHz) IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias
USB Conversion Gain (dB)
LSB Conversion Gain (dB)
10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
9 8 7 6 5 4 3 2 1 0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 RF USB (GHz)
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
9 8 7 6 5 4 3 2 1 0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 RF LSB (GHz)
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 3 of 9
Characteristic Data and Specifications are subject to change without notice. (c)2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC Transmitter
July 2007 - Rev 27-Jul-07
U1009-BD
Transmitter Measurements (cont.)
XU1009-BD_4samples: USB IIP3 (dBm) vs. RF (GHz) IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias
17 16 15 14 13 12 11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
XU1009-BD_4samples: LSB IIP3 (dBm) vs. RF (GHz) IF = -10dBm per tone, LO Power = 2 and 4dBm, Nominal Bias
20 19 18 17 16 15 14 13
USB IIP3 (dBm)
10 9 8 7 6 5
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C12 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C12 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
LSB IIP3 (dBm)
12 11 10 9 8 7 6 5
4 3 2 1 0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 RF USB (GHz)
4 3 2 1 0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 RF LSB (GHz)
XU1009-BD Tch_max and Rth vs. Backplate Temp Nominal Datasheet Bias Conditions 250 225 200 Tch_max (C) 175 150 125 100 Tch_max (C) 75 50 20 30 40 50 60 70 80 90 100 110 120 130 Backplate Temp (C) Rth (C/W) 25 20 140 60 55 50 45 40 35 30 Rth (C/W)
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 4 of 9
Characteristic Data and Specifications are subject to change without notice. (c)2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC Transmitter
July 2007 - Rev 27-Jul-07
U1009-BD
0.305 (0.012) 2.000 (0.079)
2
Mechanical Drawing
0.904 (0.036)
3
1.904 2.104 (0.075) (0.083)
4 5
2.504 (0.099)
6
2.904 (0.114)
7
8
0.996 (0.039)
0.295 (0.012) 0.0
1 12 11
XU1009-BD
10
9
0.0
0.504 (0.020)
0.904 (0.036)
2.305 (0.091)
2.704 (0.106)
3.200 (0.126)
(Note: Engineering designator is 26TX0555) Units: millimeters (inches) Bond pad dimensions are shown to center of bond pad. Thickness: 0.110 +/- 0.010 (0.0043 +/- 0.0004), Backside is ground, Bond Pad/Backside Metallization: Gold All DC/IF Bond Pads are 0.100 x 0.100 (0.004 x 0.004). All RF Bond Pads are 0.100 x 0.200 (0.004 x 0.008). Bond pad centers are approximately 0.109 (0.004) from the edge of the chip. Dicing tolerance: +/- 0.005 (+/- 0.0002). Approximate weight: 3.968 mg. Bond Pad #1 (RF Out) Bond Pad #2 (Vd1) Bond Pad #3 (IF1) Bond Pad #4 (Vg4) Bond Pad #5 (Vg3) Bond Pad #6 (Vg2)
Vg3 Vg2 Vss
Bond Pad #7 (Vss) Bond Pad #8 (LO)
Bond Pad #9 (Vd3) Bond Pad #10 (Vd2)
Bond Pad #11 (IF2) Bond Pad #12 (Vg1)
Bias Arrangement
Vd1 Vg4 IF1
2 3 4 5 6
Bypass Capacitors - See App Note [2]
7
8
LO
RF
1 12 11
XU1009-BD
10
9
IF2 Vg1 Vd2 Vd3
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 5 of 9
Characteristic Data and Specifications are subject to change without notice. (c)2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC Transmitter
July 2007 - Rev 27-Jul-07
U1009-BD
App Note [1] Biasing - As shown in the bonding diagram, this device is operated by separately biasing Vd(1,2,3)=5.0V, Vss=-5.0V, Id1=230mA, Id2=140mA, Id3=75mA and Iss=50mA. Additionally, a mixer and doubler bias are also required with Vg3=Vg4=-0.5V. Adjusting Vg3 and Vg4 above or below this value can adversely affect conversion gain, LO/RF isolation and intercept point performance. Gain control can be adjusted by varying Vg1 from 0.0 to -1.2 V with 0.0 V providing minimum attenuation and -1.2 V providing maximum attenuation. It is also recommended to use active biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results. Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate voltage needed to do this is -0.2V. Typically the gate is protected with Silicon diodes to limit the applied voltage. Also, make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.
App Note [2] Bias Arrangement For Parallel Stage Bias (Recommended for general applications) -- The same as Individual Stage Bias but all the drain or gate pad DC bypass capacitors (~100-200 pF) can be combined. Additional DC bypass capacitance (~0.01 uF) is also recommended to all DC or combination (if gate or drains are tied together) of DC bias pads. For Individual Stage Bias -- Each DC pad (Vd1,2,3, Vss, and Vg1,2,3,4) needs to have DC bypass capacitance (~100-200 pF) as close to the device as possible. Additional DC bypass capacitance (~0.01 uF) is also recommended.
MTTF
These numbers were calculated based on accelerated life test information and thermal model analysis received from the fabricating foundry.
XU1009-BD MTTF (hours) vs. Backplate Temp (degC) Nominal Datasheet Bias Conditions
1.0E+10
1.0E+09
1.0E+08 MTTF (hours)
1.0E+07
1.0E+06
1.0E+05
1.0E+04 20 30 40 50 60 70 80 90 100 110 120 130 Backplate Temp (C)
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 6 of 9
Characteristic Data and Specifications are subject to change without notice. (c)2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC Transmitter
July 2007 - Rev 27-Jul-07
U1009-BD
App Note [3] USB/LSB Selection -
LSB
USB
For Upper Side Band operation (USB): With IF1 and IF2 connected to the direct port (0) and coupled port (180) respectively as shown in the diagram, the USB signal will reside on the isolated port. The input port must be loaded with 50 ohms.
IF2
IF1
For Lower Side Band operation (LSB): With IF1 and IF2 connected to the direct port (0) and coupled port (180) respectively as shown in the diagram, the LSB signal will reside on the input port. The isolated port must be loaded with 50 ohms.
An alternate method of Selection of USB or LSB:
USB
LSB
In Phase Combiner
In Phase Combiner
-180
-180
IF2
IF1
IF2
IF1
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 7 of 9
Characteristic Data and Specifications are subject to change without notice. (c)2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC Transmitter
July 2007 - Rev 27-Jul-07
U1009-BD
Device Schematic
Block Diagram
Vd1 IF1 Vd2 Vd3 Vss
Output Amp RF Out RF Out RF In RF
Mixer LO LO Out
LO Buffer LO In
Doubler LO Out LO In LO
Vg1
IF2
Vg4
Vg2
Vg3
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 8 of 9
Characteristic Data and Specifications are subject to change without notice. (c)2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC Transmitter
July 2007 - Rev 27-Jul-07
U1009-BD
Handling and Assembly Information
CAUTION! - Mimix Broadband MMIC Products contain gallium arsenide (GaAs) which can be hazardous to the human body and the environment. For safety, observe the following procedures: Do not ingest. Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed. Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures. Life Support Policy - Mimix Broadband's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President and General Counsel of Mimix Broadband. As used herein: (1) Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. (2) A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ESD - Gallium Arsenide (GaAs) devices are susceptible to electrostatic and mechanical damage. Die are supplied in antistatic containers, which should be opened in cleanroom conditions at an appropriately grounded antistatic workstation. Devices need careful handling using correctly designed collets, vacuum pickups or, with care, sharp tweezers. Die Attachment - GaAs Products from Mimix Broadband are 0.100 mm (0.004") thick and have vias through to the backside to enable grounding to the circuit. Microstrip substrates should be brought as close to the die as possible. The mounting surface should be clean and flat. If using conductive epoxy, recommended epoxies are Tanaka TS3332LD, Die Mat DM6030HK or DM6030HK-Pt cured in a nitrogen atmosphere per manufacturer's cure schedule. Apply epoxy sparingly to avoid getting any on to the top surface of the die. An epoxy fillet should be visible around the total die periphery. For additional information please see the Mimix "Epoxy Specifications for Bare Die" application note. If eutectic mounting is preferred, then a fluxless gold-tin (AuSn) preform, approximately 0.0012 thick, placed between the die and the attachment surface should be used. A die bonder that utilizes a heated collet and provides scrubbing action to ensure total wetting to prevent void formation in a nitrogen atmosphere is recommended. The gold-tin eutectic (80% Au 20% Sn) has a melting point of approximately 280 C (Note: Gold Germanium should be avoided). The work station temperature should be 310 C +/- 10 C. Exposure to these extreme temperatures should be kept to minimum. The collet should be heated, and the die pre-heated to avoid excessive thermal shock. Avoidance of air bridges and force impact are critical during placement. Wire Bonding - Windows in the surface passivation above the bond pads are provided to allow wire bonding to the die's gold bond pads. The recommended wire bonding procedure uses 0.076 mm x 0.013 mm (0.003" x 0.0005") 99.99% pure gold ribbon with 0.5-2% elongation to minimize RF port bond inductance. Gold 0.025 mm (0.001") diameter wedge or ball bonds are acceptable for DC Bias connections. Aluminum wire should be avoided. Thermo-compression bonding is recommended though thermosonic bonding may be used providing the ultrasonic content of the bond is minimized. Bond force, time and ultrasonics are all critical parameters. Bonds should be made from the bond pads on the die to the package or substrate. All bonds should be as short as possible. Ordering Information Part Number XU1009-BD-000V XU1009-BD-EV1 Description Where "V" is RoHS compliant die packed in vacuum release gel paks XU1009 die evaluation module Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 9 of 9
Characteristic Data and Specifications are subject to change without notice. (c)2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.


▲Up To Search▲   

 
Price & Availability of XU1009-BD0707

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X